Where Do You Buy Castor Beans
Where Do You Buy Castor Beans >>>>> https://tinurll.com/2tEnrg
The castor bean is the seed of the castor oil plant (Ricinus communis). It contains a highly toxic compound called ricin, which is released when the seed is crushed or chewed. Ricin prevents cells from making proteins, which are essential to life. Although castor oil is made from the same seeds, it does not contain ricin.
Ingested castor beans are generally toxic only if the ricin is released through mastication. Reports on the ricin content of castor beans vary, but it is probably in the range of 1% to 5%.3 Purified ricin is a white powder that is soluble in water and stable over a wide pH range.4
The castor bean plant also contains another glycoprotein lectin, the Ricin communis agglutinin, which, unlike ricin, is not directly cytotoxic, but does have affinity for the red blood cell, leading to agglutination and subsequent haemolysis. Ricin communis agglutinin is not significantly absorbed from the gut and causes clinically significant haemolysis only after intravenous administration.10
Castor beans have been used traditionally by women in many countries for birth control.19 The use of castor seed oil in India has been documented since 2000 BC for use in lamps and in local medicine as a laxative, purgative, and cathartic in Unani, Ayurvedic and other ethnomedical systems. Castor seed and urine have also been used in China for centuries, mainly prescribed in local medicine for internal use or use in dressings.1
The clinical effects of castor bean ingestion can be classified as acute and late effect. In the acute phase, the patient usually develops a gastrointestinal manifestation, while the late phase reflects the cytotoxic effect on liver, kidney, and the adrenal gland, which typically starts 2 to 5 days after exposure. The ricin toxicity affects many of the body systems, and fever may be the major presenting clinical picture.21 The fever may start 30 minutes to two hours after ingesting 1 to 4 beans.22
The castor plant has been known since time immemorial and its use in the prehistoric era has been evidenced by archaeological findings such as that of the Border Cave in South Africa. Traces of wax containing ricinoleic and ricinelaidic acids were found on a thin wooden stick, which was suggested to be a poison applicator, dating back to about 24,000 years ago [1]. The castor seeds and other parts of the castor plant were certainly utilized in ancient Egypt for pharmacological purposes. In the Ebers Papyrus, an Egyptian medical treatise dating back to before 1500 BCE, an entire chapter is dedicated to the castor bean that is indicated as an abortifacient, a laxative, a remedy for abscessual illness, baldness, and so on [2]. In the Hearst Papyrus, written approximately in the same period, various castor plant parts are included as ingredients in some prescriptions for internal use, with the aim of expelling fluid accumulation or promoting diuresis, as well as for external use as poultices for bandaging [3]. Ancient Egyptians knew the toxicity of castor bean and the use of seed pulp, included in drug preparations for oral ingestion, was recommended only in small amounts. In addition, a castor seed-containing concoction was prescribed to cure the urinary disease of a possibly diabetic child [4]. Around 400 BCE, the father of western medicine Hippocrates prescribed castor bean oil for laxative and detoxifying action [5]. The Greek herbalist and physician Pedanius Dioscorides (40 to 90 CE) in De Materia Medica wrote that castor seeds could be used as expectorant, diuretic, emetic, laxative, anti-inflammatory, to cure erysipelas, burns, varicose veins, etc. [6]. In the same period, Pliny the Elder (23 to 79 CE) wrote Naturalis historia, comprising the whole area of antique knowledge. In this encyclopedic work, also castor bean found a place [7].
Castor bean was used also in the pharmacopeia of eastern ancient cultures. In Chinese traditional medicine, castor seeds were recommended for their anthelmintic activity; seed poultice and leaf juice were prescribed for external use to treat ulcers and chronic wounds, whereas the latex was instilled in the ear for rhinitis treatment (reviewed in [8]). In Ayurveda, castor plant is used for rheumatic conditions, as well as for gastropathy, constipation, inflammation, fever, ascites, bronchitis, cough, skin diseases, colic, and lumbago. In Yunani medicine, castor root is used as a purgative and for skin diseases, the leaves are used to increase breastmilk production and are applied to skin for burns, the seeds and the oil act as a purgative, useful in liver troubles, pains, lumbago, boils, piles, ringworm, inflammation, ascites, asthma, rheumatism, dropsy, and amenorrhea (reviewed in [9]). Ground castor seeds or leaf paste have been applied in veterinary medicine to heal sprains, swelling, and wounds [10].
Castor bean has been used in folk medicine throughout the world and has been reported: (i) As a galactogogue on the Mediterranean coasts of Europe, where fresh leaves or leaf juice are applied on the puerperal breast to promote lactation; (ii) as a remedy for various articular, cutaneous, or ocular diseases in Africa, where crushed seeds or oil, sometimes in combination with other plants, are spread or rubbed on the part of the body in need, or a root decoction is drunk to induce uterine contraction as an abortive; (iii) as a medicament to cure erysipelas, flu, inflammation of the womb, and stomach aches in the Caribbean, where a leaf poultice is recommended; (iv) as an anthelmintic or a purgative in Brazil where the seed oil is orally consumed, or locally applied with the purpose of stopping hair loss, healing wounds, or burns (reviewed in [11]).
(a) Ribbon model of the crystal structure of ricin at 2.5 Å (accession number Protein Data Bank 2AAI). The A chain domains are colored in green, blue, and light blue; the B chain domains are colored in yellow and orange. (b) Catalytic site of ricin. The key residues are indicated and colored in blue, whereas adenine substrate is depicted in red. (c) Proposed mechanism of depurination reaction catalyzed by ricin. The hydrolysis proceeds through a dissociative mechanism forming an oxocarbenium transition state. Arg180 protonates the leaving group and the N-glycosidic bond is broken. Glu177 deprotonates the hydrolytic water (highlighted by a red dotted rectangle) that attacks carbon to complete the depurination reaction. Figure 2a and 2b were produced by PyMOL (version 2.3.1); Figure 2c was produced by ACD/ChemSketch (version 2015.2.5).
Firstly, it was reported that ricin entered into cytoplasm through clathrin-dependent endocytosis [53]. Afterwards, it became clear that clathrin-independent mechanisms were also involved [54]. After cell uptake, ricin is delivered to early endosomes, from where most of protein molecules are recycled back to the cell surface or delivered, via late endosomes, to lysosomes for proteolytical degradation. A small amount of non-degraded ricin is addressed within the trans-Golgi network [55]. The involvement of the Golgi complex in ricin routing was confirmed using different Golgi-disrupting agents, such as brefeldin A, monensin, etc. In fact, the pretreatment with these agents inhibited the cytotoxic effects of ricin [56]. It was demonstrated that ricin was cycled from Golgi to the endoplasmic reticulum via coatomer protein 1 (COP-1)-coated vesicles [57], although it was later proved that the COP-1-independent pathway could also be involved [58].
From castor seeds, a nontoxic oil can be extracted that has multitude of uses in many sectors, including cosmetic, pharmaceutic, mechanical, and chemical industry. Castor oil production is increasing worldwide because of its versatile application, low cost, availability, and biodegradability. In addition, the oil-free seed pulp can be used in agriculture as a natural fertilizer [86], although the processing of castor seeds requires great caution due to the high allergenicity [87,88] and extreme toxicity [76] of their protein fraction, represented, above all, by ricin. World production of castor oil increased from 0.8 million tons in 2000 [89] to 1.21 million tons in 2014 [90], with a castor seed production of 1.49 million tons in 2017 [91]. Leading producing countries are India, with over 80% of the global yield, Mozambique, China, Brazil, Myanmar, Ethiopia, Paraguay, and Vietnam [92]. The oil makes up about 50% of the weight of the seeds and is mostly constituted of ricinoleic acid (90%), with minor amounts of dihydroxystearic, linoleic, oleic, and stearic acids. Ricin isoforms and the alkaloid ricinine, are not transferred to the oil fraction during extraction, which can be performed by cold or warm pressing, but remain in the seed cake [93,94].
Castor bean meal press cake or other residues of the castor oil production have been employed as a protein source for feed or fertilizer, but their use is very limited due to ricin toxicity [76]. In 2008, the European Food Safety Agency defined ricin as an undesirable substance in animal feed. Ricinus derived material should be appropriately inactivated through physical and/or chemical methods to guarantee animal and human health [95]. Nevertheless, many accidental poisonings are still reported for animals eating improperly detoxified fertilizer or other agricultural products containing castor derived material [76,94].
Q. I have a question about a plant that I find very intriguing: the Castor Bean Plant. I had seen a few in my neighborhood and finally tracked a plant down in nearby Ottsville, PA, thinking I'd hit the jackpot. I planted it in a spot I thought it would like judging from the others I'd seen, and it has thrived right outside my back door. Then I read an article about the plant in my favorite local paper, The Bucks County Herald, and was horrified! The described toxicity of the beans (though they are beautiful to look at) really scared me! I had known nothing about the beans being poisonous; I just loved